RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice.
نویسندگان
چکیده
Deeper knowledge of pharmacokinetic and pharmacodynamic (PK/PD) concepts for RNA therapeutics is important to streamline the drug development process and for rigorous selection of best performing drug candidates. Here we characterized the PK/PD relationship for small interfering RNAs (siRNAs) targeting luciferase by examining siRNA concentration in plasma and liver, the temporal RNA-induced silencing complex binding profiles, mRNA reduction, and protein inhibition measured by noninvasive bioluminescent imaging. A dose-dependent and time-related decrease in bioluminescence was detected over 25 days after a single treatment of a lipid nanoparticle-formulated siRNA targeting luciferase messenger RNA. A direct relationship was observed between the degree of in vivo mRNA and protein reduction and the Argonaute2 (Ago2)-bound siRNA fraction but not with the total amount of siRNA found in the liver, suggesting that the Ago2-siRNA complex is the key determinant of target inhibition. These observations were confirmed for an additional siRNA that targets endogenously expressed Sjögren syndrome antigen B (Ssb) mRNA, indicating that our observations are not limited to a transgenic mouse system. Our data provide detailed information of the temporal regulation of siRNA liver delivery, Ago2 loading, mRNA reduction, and protein inhibition that are essential for the rapid and cost-effective clinical development of siRNAs therapeutics.
منابع مشابه
Small interfering RNA; principles, applications and challenges--
Gene silencing using RNAi (RNA interference), has recently been used as a successful laboratory technique in determining the function and control of gene expression and provides a wide range of applications in molecular biology and gene therapy. RNAi is a method of suppressing gene expression. In this direction, a single-stranded RNA molecule of about 21–23 nucleotides, called siRNA (small inte...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کاملDesign, simplified cloning, and in-silico analysis of multisite small interfering RNA-targeting cassettes
Multiple gene silencing is being required to target and tangle metabolic pathways in eukaryotes and researchers have to develop a subtle method for construction of RNA interference (RNAi) cassettes. Although, several vectors have been developed due to different screening and cloning strategies but still some potential limitations remain to be dissolved. Here, we worked out a simple cloning stra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 79 6 شماره
صفحات -
تاریخ انتشار 2011